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The complete probability distribution function for a multifractal field with quadratic f(a) is derived.
We do this for a model which is obtained as the continuous limit of an infinite product of random func-
tions each one having log-normal statistics. The resulting probability distribution is also log normal but
with long-range logarithmic correlations. This can be written in a local n —0 form.
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I. INTRODUCTION

Many phenomena in condensed-matter physics appear
to exhibit multifractal statistics. Systems where these
statistics have been discovered include turbulence [1-3],
diffusion near fractals [4], electrons in disordered media
[5], polymers in disordered media [6], random ferromag-
nets [7], chaotic dissipative systems [8], and random
resistor networks [9]. There are two basic properties [8]
of a multifractal field O (r). First it must be self-similar
under coarse graining. Second, the gth moment of O (r)
must satisfy the following scaling law [10] when averaged
over different realizations of the field O:

a

(O(r)?) ~ 1

Here R is a typical linear dimension of the system, X, is
the fractal dimension, and a is a small distance cutoff. r
is kept constant during the averaging, and can be taken
to be any position. x, are the “scaling dimensions” of O
and the values at different g are not related to each other
in a trivial way. There is a linear relation [10] between
the x,’s and the more familiar 7,’s used by Halsey et al.
[8]. In the case of turbulence, the field O (r) is thought to
be the local energy dissipation. Multifractal statistics im-
ply that different moments of the energy scale as if having
different fractal dimensions.

Because they occur in many systems, there has been
much effort devoted to giving theoretical explanations for
multifractal phenomena. Most theoretical work has been
for random disordered systems where the replica is fre-
quently performed. There is still little known about how
to relate multifractal scaling to standard critical phenom-
ena, where Lagrangian field theory (FT) has been highly
successful. In a recent paper [10], the connection be-
tween FT and multifractal statistics was explored. The
scaling dimension for multifractal moments must be a
convex function of its order, which is the opposite of
what is found in FT’s. It was suggested that field gra-
dients may be a more appropriate candidate to connect
multifractal scaling with FT’s.
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In this paper, we derive the expression for the complete
probability distribution of a multifractal field having a
quadratic f(a). This is a case of considerable practical
interest because the quadratic approximation is quite
good for a variety of systems and also because small
[ (a), the region of strongest departure from a quadratic
form, is difficult to ascertain experimentally. The result-
ing distribution for our system is quite simple. It is log
normal in the measure and has long-range logarithmic
correlations. This result is useful in the context of a sys-
tem subject to multifractal noise, or in modeling mul-
tifractal phenomena. A knowledge of the probability dis-
tribution is often quite important in the understanding of
a random process.

The outline of this paper is as follows. We first intro-
duce the “continuous scale model,” which is the infinite
product of a set of random functions, each one with a
log-normal distribution. We then derive the probability
distribution for this model and check that it obeys mul-
tifractal scaling.

II. CONTINUOUS SCALE MODEL

The simplest way to understand multifractal statistics
is in terms of a “blob” picture. One continues to subdi-
vide a system into smaller scales. At each scale one as-
signs new weights to these finer subdivisions. An exam-
ple of this is the two-scale Cantor set [8], or the beta
model of turbulence [3]. In the latter case, multifractal
scaling is thought to apply to the local energy dissipation.
The velocity field in turbulent flow can also be under-
stood in terms of such a blob picture, but the statistics of
the velocity field appear quite different than the energy
dissipation and less is understood about them [11,12].
Here an idea related to the “blob” picture is employed
which is more suitable for obtaining the complete proba-
bility distribution.

Consider a Gaussian random function u (r). This is
completely characterized by its mean and two-point
correlation function

(u(r))=u, (2)
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(u(n)u(r'))=M(r—r'|). 3)

We wish to consider In¢(r)=u(r), so that ¢ is log-
normally distributed. Now consider N realizations of
¢(r) chosen at random from this distribution, label them
¢,(r) where i=1,...,n. The blob constructions men-
tioned above correspond here to multiplying these func-
tions together while rescaling each function at every scale

In order to obtain a simple expression, we take the limit
as N—oo and C—0 in such a way as to give a well-
defined limit. Thus we write

mo(n)= [ "u,(er)dy , (5)

where y characterizes the amount of rescaling. At the
upper limit of integration, the function has been shrunk
by a scale factor exp(c¢I'). Writing out the probability

O(r)= ﬁ :(eCir) . (4)  distribution in full for all values of 4 and v, correspond-
= ing to Eq. (3), one has
i
P(u,)du, <exp |—+ forf f[u,,(e"’r)—ii]M_l(r,r’)[u./(e‘yr’)—ﬁ]ddrddr’dy du, , (6)

where d is the spatial dimension and the function M ~! is
the continuous analog of the inverse matrix of
M(r,r')=M(—r').

III. PROBABILITY DISTRIBUTION

With the model as defined above we now wish to derive
the probability distribution of InO, P{InO(r)}. From Eq.
(5) InO is a linear combination of the u,’s. Because the
uy’s are Gaussian random variables, then InO must also
be random. It is therefore characterized completely by
its mean and two-point correlation function which we
now compute

In_5=<1n0)=<f0ruy(ec7’r)dy>=171“ : (7

From Eq. (6) the cumulant two-point correlation function
is

N(r—r')=(In0(r)In0(r')) ¢
= for(uy(ecyr)uy(e”r’))dy
= [ M(eIr—r)dy , (®)

where the subscript C represents a cumulant average.
Letting r = |r—r'| and s =r exp(cy ) this becomes

[

[0 ps) % 9)
[

r

If the correlation function M (s) has a finite correlation
length &, then the upper limit of this integral can be taken
to infinity when r>>exp(—cI')§. Then the region
around the lower limit will give rise to a logarithmic
dependence on r, of the two-point function
N(r—r')~[M(0)/c]In(&/r), where here we have also as-
sumed that r <<§. As an example, choose

My(1—s) fors<1.
M(s)= 0 otherwise . (10
Then Eq. (9) gives
M
—c—" In|=|—14r| for 1>r>e™°T,
N(r)= (11)

M
—c—o[cI‘—(e‘r—-l)r] for r<e ™l .

As suggested above, the dominant term in the range
1>r>e T is logarithmic. Thus we can conclude that
the probability distribution for InO is

P{InO(r)} = exp [—%f f[an(r)—ln_—O_]N_l(r,r')[an(r')-ln—O]ddrddr'] : (12)

The notation is the same as in the preceding section in
that the function N ~! is the continuous analog of the in-
verse matrix of N(r,r')=N(r—r’).

This is the complete probability distribution corre-
sponding to the continuous scale model. Because ¢ can
be eliminated through a rescaling of y it will be set equal
to 1 from now on.

The range of scales where fractal scaling should hold
goes from the lower cutoff @ ~exp(—T)£ to the largest
length scale R ~£. The corresponding f (a) can also be
obtained. f(a) can be defined through the probability
distribution at one point

P(InO)d InO «<exp |In —}:— f d1nO .

an/ln 1:-”

From Eq. (12) the probability distribution at a point can
be obtained. It must also be log normal and the variance
is N(0)=I'M,. The corresponding f (a) is obtained by
noting from above that I'=In(R /a), therefore

(13)

_la—u)?

==,

(14)
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One can also check that the two-point correlation func-
tions for this model obey the form proposed by Cates and
Deutsch [13]. First note that by a linear shift in InO, the
factor @ can be eliminated, so we will consider the case
# =0 which simplifies the algebra in what follows. First
we calculate the x,’s by computing (O?). This gives
x,=—(M,/2)q%. Now we consider the correlation func-

9
tions

<O(I)po(rl)q>=(ep1n0(r)+qln0(r')> . (15)

Because the probability distribution is quadratic in

InO (r) this integral can be done in closed form. Using

the logarithmic correlation function obtained above, this

. . _PqMo . s

is proportional to r . This exponent is also equal to

X, 14X, —X,, in agreement with earlier work.
IV. DISCUSSION

The relationship between the result found here and FT
remains open. Duplantier and Ludwig [10] analyzed the
distinction between systems giving rise to multifractal
statistics and “standard” field theory. The exponents x,
have field-theoretic analogs in the form of scaling opera-
tors. Although there are formal similarities between
statistics in critical phenomena and multifractal statistics,
an essential stability requirement for exponents is re-
versed for a standard ¢* theory and multifractals. There
are several cases [4,7,6,14], however, of systems involving
random critical behavior that show multifractal statistics
and are qualitatively different for more standard field
theories. In the cases that have been analyzed theoreti-
cally [4,7,14], the x, are quadratic to first order in an €
expansion which implies a quadratic f (a) which is iden-
tical to the case considered in this paper. For example,
Ref. [7] considered ferromagnetic spins with quenched
disorder finding that the average magnetization varied
from site to site in a way characterized by multifractal
statistics.

The systems just mentioned can be understood by con-
sidering an effective Lagrangian that can be written as an
expansion of a field and its gradients about zero. It is of
interest to compare this to what we have found here.
Equation (12) can be written in a local form in an even
number of dimensions. For example, in two dimensions
one has the Lagrangian

L =(VIn0)*. (16)

The N~ !(r,r')=V? when one takes N(r) to be logarith-
mic. In general, for even dimensions one obtains

L =In0(V?*)*n0 . 17

The Lagrangian is highly nonlinear in the field O and in
contrast to the cases above cannot be written as an expan-
sion of the field O about O =0. This is to be expected as
a “standard” field theory should not lead to multifractal
statistics [10]. One approach to relate this to a more
standard field theory may be via the often used identity
InO =lim, _,4(O"—1)/n. This means that one should
study the Lagrangian

L =0"V?)420" (18)

as a function of n and look at the limit as n —0. Under
renormalization additional terms are generated. At
present it is not clear how to add terms to this Lagrang-
ian so as to obtain a sensible limit as n —0.

However, we have shown that it is possible to write
down a highly nonlinear field theory that gives multifrac-
tal statistics and therefore has the opposite convexity as
found in most standard field theories.
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